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Abstract. A new algorithm for image quality assessment based on en-
tropy of Gabor filtered images is proposed. A bank of Gabor filters is
used to extract contours and directional textures. Then, the entropy of
the images obtained after the Gabor filtering is calculated. Finally, a
metric for the image quality is proposed. It is important to note that
the quality of the image is image content-dependent, so our metric must
be applied to variations of the same scene, like in image acquisition and
image processing tasks. This process makes up an interesting tool to
evaluate the quality of image acquisition systems or to adjust them to
obtain the best possible images for further processing tasks. An image
database has been created to test the algorithm with series of images
degraded by four methods that simulate image acquisition usual prob-
lems. The presented results show that the proposed method accurately
measures image quality, even with slight degradations.

1 Introduction

Image acquisition is a fundamental stage in every machine vision system. Ob-
taining the best quality images is critical to ensure a good performance. In this
context, it is interesting to have a reliable way to measure the quality of the
captured images or, from another point of view, to adjust the system to obtain
the best possible images. Image quality assessment plays a fundamental role in
this process, as well as in many image processing applications. It can be used to
compare the performance of different methods (processing or acquisition) and
to select the one which provides the best quality (or less image degradation); it
can be used to measure the degradation itself after image processing operations;
it also provides a metric to evaluate the performance of compression methods,
like JPEG, or the quality of transmission channels (which is not covered in this
work).

The most challenging problem in image quality assessment is the subjectivity
inherent to perceived visual quality [1]. Several attempts to measure the quality
of an image have been made, but it remains an open problem. Methods based on



the measurement of Peak Signal to Noise Ratio (PSNR) or Mean Square Error
(MSE) have been widely used due to their easy implementation, but the results
show that they are not well suited to measure the human observer perceived
quality [2]. Methods based on the use of previous knowledge of the Human Visual
System (HVS) have shown a better performance in image quality assessment [3],
[4]. HVS relays on the assumption that human observers pay more attention
to details like structural information, which are more relevant to image quality
measurement. Some previous contributions have pointed the use of entropy to
measure image quality [5]. However, an entropy measure is unable to distinguish
between noise and structural information. To solve this problem, a method based
on image anisotropy has been proposed in [6].

Gabor filters have been extensively used in texture analysis and classifica-
tion [7], [8], [9], but their use in image quality assessment remains little explored
[10], [11]. The proposed method uses a bank of Gabor filters to model the linear
filtering properties of single cells in visual cortex and to extract image contours
and directional textures, which are directly related to HVS. Then, an estimation
of the amount of visual information (randomness) perceived is calculated mea-
suring the entropy of the outputs of the filter bank. The entropy value is directly
related to the randomness of the image. Poorly defined transitions in the per-
ceived image (Gabor response), which means less image quality, would produce
a high entropy value. A metric is calculated by averaging the entropies obtained
from the different Gabor filter bank outputs. This value can be used by itself as
a reference, or can be normalized in relation to the original reference image, to
show whether certain adjustment or process diminishes the image quality.

The paper is organized as follows. A theoretical background and the proposed
algorithm are presented in Sect. 2. In Sect. 3 the developed test procedure to
validate the method is shown. Results and discussion are presented in Sect. 4.
Finally, some conclusions are given in Sect. 5.

2 Algorithm

2.1 Gabor Filters

Gabor filtering for image textural analysis has been introduced by Daugman
[12]. The success of Gabor filters in this field is due to their aptitude to model
the response of simple cortical cells in the visual system.

A 2D Gabor filter can be thought of as a complex plane wave modulated by
a 2D Gaussian envelope and can be expressed in the spatial domain as:
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where f is the spatial frequency of the wave at an angle θ with the x axis, σ1 and
σ2 are the standard deviations of the 2D Gaussian envelope, and ϕ is the phase.



Frequently in textural analysis applications, and also in this case, the Gaussian
envelop is symmetric, so we have σ = σ1 = σ2.

A Gabor filter is suited to obtain local frequency information in a specific
orientation (given by θ), which is directly related with image contours. A com-
mon practice in Gabor texture analysis is to use a bank of Gabor filters with
different parameters tuned to capture several orientations and spatial frequen-
cies. Attempts to systematize the design of the bank have been proposed [9],
showing that increasing the number of frequencies and orientations has a little
effect on the performance of the filter bank. However, the smoothing parameter,
σ, is a significant factor to be carefully chosen in the bank design. Unfortunately,
most of the times, it needs to be empirically chosen.

2.2 Image Entropy

The concept of entropy is associated with the amount of disorder in a physical
system. Shannon redefined the entropy as a measure of the amount of information
(uncertainty) in a source [13]. If the source is an image, it can be seen as a 2D
array of information. The Shannon entropy is given by:

H(X) = −

n
∑

i=1

p(xi) logb p(xi) (2)

where Pr [X = xi] = p(xi) is the probability mass distribution of the source. This
equation can be used to estimate the global entropy of an image characterized
by its histogram:

H(I) = −

N
∑

i=1

histnorm(Li) log(histnorm(Li)) (3)

where Li represents the N intensity levels of the m × n image I(x, y) and
histnorm(Li) is the histogram properly normalized to fit a probability distri-
bution function:

N
∑

i=1

histnorm(Li) = 1 (4)

The entropy of an image is an estimation of randomness, and is frequently
used to measure its texture. As shown in Fig. 1, entropy can be thought as a
measurement of the sharpness of the histogram peaks, which is directly related
with a better defined structural information.

2.3 The Proposed Method

A flowchart of the proposed process is shown in Fig. 2. The input image is a grey
level one; however the process can be easily applied to planes of a color space
(like RGB). A bank of Gabor filters is used to extract contours and textural
information. This stage converts the information to the HVS domain (cortex
responses). The selected parameters for the filters are the following:



Fig. 1. Example of the entropy of different shape histograms. a) shows a higher entropy
than b) (Ha = 13.9627;Hb = 6.9216)

– Six different orientations are used. However, the empirical tests show that
the number of filters and angles does not seem to be crucial:
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– Two phases are used, ϕ1 = 0 for a symmetric filter (on the θ orientation)
and ϕ2 = π

2 for an anti-symmetric filter. This can be thought as real and
imaginary parts of the same filter response.

– Two different spatial frequencies are used: f1 = 1
8 (spatial period λ of 8

pixels) and f2 = 1
4 (spatial period λ of 4 pixels).

– The standard deviation of the Gaussian envelope is empirically fixed to σ =
λ
2 for all the filters.

Fig. 2. Flowchart of the process

24 filtered images are obtained, 12 with ϕ1 = 0 and 12 with ϕ2 = π
2 . Each

pair is combined to estimate the energy of the filtered images by:

E(x, y) =
√

Rϕ1
(x, y)2 +Rϕ2

(x, y)2 (6)

where Rϕi(x,y) is the Gabor response for the phase ϕi.
This process results in 12 energy images. The histogram of these energy

images is computed, and their entropy estimated through Eq. (3). Entropy mea-
sures the amount of information or, in other words, the randomness of the image
histogram.

This procedure combines the benefits of objective and subjective measure-
ments. On the one hand, Gabor filtering provides features inherent to the visual
perceived quality by modelling the behaviour of visual cells. On the other hand,
this information is quantified by the use of entropy.



However, the amount of information in an image depends on its content as
well as on its quality. E.g. there is less information in an image of a white sheet
than in a written one. For this reason, the entropy of the Gabor filtered image
is not an absolute quality measurement, unless compared to a reference image.
This is not a problem for the applications proposed in Section 1, in which the
interest lies in comparing the quality of images of the same scene, or the effect
of certain processing.

Taking this into account, the proposed relative quality metric (Qr) is com-
puted averaging the entropy of the energies of the 12 Gabor filtered images. The
result is inverted and multiplied by the entropy of the reference image, obtained
the same way:

Href = 1
12

∑12
i=1 Hrefi

H = 1
12

∑12
i=1 Hi

Qr =
Href

H

(7)

with H being the calculated entropy and Href the entropy of the reference
image. As the entropy increases, the quality of the image decreases, so a Qr ∈

(0, 1) means the quality of the image is lower than the reference (e.g. after the
transmission through a noisy channel). If the resultant Qr > 1, the quality of
the image is higher than the reference (e.g. a noisy image which is enhanced by
a median filtering, a blurred image which is enhanced by a fine tuning of the
acquisition system, etc.).

3 Test Design

Two different test procedures have been developed to validate the performance
of the proposed metric. The fist one is intended to model subtle variations in the
image acquisition system. This is an objective quality test. The second one is
intended to compare the proposed metric with the quality perceived by human
observers. This is a subjective test.

3.1 Objective test

For this purpose, an image database of natural scenes has been created. It is
composed of 1100 images of 2136× 1424 pixels. It was originated by 25 original
images (see Figure 3) progressively degraded in 10 steps following 4 different
procedures (see below), which becomes in 25×(10+1)×4 quality tagged images.

The degradations introduced to the original images in this first database are:

– Blur: Gaussian blur has been applied by increasing the filter size in 10 steps
(from 3× 3 to 21× 21 pixel blocks).

– Noise: Zero mean Gaussian noise has been added by increasing its standard
deviation in 10 steps (from 5 to 25 in 8 bits per pixel grey scale images).



Fig. 3. Original images of natural scenes used to create the image database

– Blur & Noise: Gaussian blur has been applied, followed by adding Gaussian
noise (10 steps). It models the effect of sensor noise after an out of focus
imaging.

– Noise & Blur: Gaussian Noise has been added, followed by Gaussian blur
(10 steps). It models the effect of software blurring operations after a noisy
image acquisition (sensor noise).

The combination of noise and blur effects in different order, allows to sim-
ulate the effects of different acquisition systems, preprocessing operations, etc.
[14]. Gaussian blur simulates the blur in an out of focus image. The Gaussian
noise models the electronic noise which is produced in the camera sensor if the
illumination, exposure time and gain parameters are not properly set. Figure 4
shows the effect of the 4 degradation procedures. This first database is intended
to test the performance of the metric in the presence of subtle degradations.

3.2 Subjective test

For the second test procedure, images from the LIVE Image Database [14] have
been used. LIVE database contains images obtained by several distortion pro-
cedures, which have been subjectively classified and scored by human observers.
The scores have been scaled and shifted to a 1 to 100 range, and a Difference
Mean Opinion Score (DMOS) was computed. For our test, images distorted



Fig. 4. Some steps for the blur, noise, blur & noise, and noise & blur degradation
process of an example image

with white noise and Gaussian blur have been used. The database also contains
images affected by JPEG compression, but it is not the aim of the proposed
algorithm to test compression formats. The test is performed in a similar way
to the first one. Images from the same scene have been sorted by their DMOS
value (original and distorted ones). Then, the Qr metric has been computed.

4 Results and Discussion

Figure 5 shows the results of the quality evaluation for the progressively degraded
image shown in Figure 4. Similar results are obtained for the rest of the images
used for the objective quality test.

It is interesting to note that most of the image quality assessment algorithms
are tested using images that have a broad variation in quality. This is adequate
when the objective is to model the quality perceived by an observer, e.g. to
evaluate the performance of a compression algorithm or a transmission system.
In these situations, the evaluation algorithm can be less precise (more tolerant),
since variations in quality which are not perceived by the observer are not critical
for the system.

However, if the objective is to select the best imaging system (or adjust it at
its best) for a machine vision application, we have to be more strict in the perfor-
mance of the method in a narrow error interval around the best possible image,
which we call Critical Peak. In other words, we need to measure the quality of the



Fig. 5. Measured quality of the 10 step degraded images: a) blur; b) noise; c) noise
after blur; d) blur after noise

image with a sufficiently high precision to obtain a strictly crescent/decreasing
function.

As can be seen again in the example of Figure 4, the degradation applied
is kindly subtle (low noise variance and small blurring mask) to test the Crit-
ical Peak performance. Figure 6 shows that all tested images have a strictly
de-crescent function for their measured qualities in the test. The slope of the
quality function varies significantly from image to image, because the degrada-
tion depends on the introduced distortion, as well as on the image content.

For the second part of the test (LIVE images), crescent curves have been
obtained, without taking into account the differences in scale (Qr ranges from
0 to 1, where 1 is the higher quality value). The results are shown in Figure 7.
As can be seen, the proposed metric also correlates with the quality perceived
by human observers. Note that a higher DMOS value means less quality (larger
difference to the reference image).

In this case, most of the curves are strictly crescent. However, there are some
anomalies in some functions, which can be due to several factors (inherent to
the image database): variance in the perceived qualities by different observers or
from one day to another; the DMOS scaling system grades every image in a 1 to
5 discrete scale, which means that the minimum DMOS values for a distorted
image is always higher than 20 (in a 1 to 100 re-scaled range); in addition, every
single image is evaluated by comparison with the original one, but not with the
whole sequence of distorted images.



Fig. 6. Quality graphics of the test procedure. All images shown a strictly de-crescent
function through the degradation procedures

There are also differences in the slopes, which produce dispersion in the
curves of different images, due to the dependency of image content (besides its
degradation). However, we obtain a good performance in quality evaluation for
degraded sequences of the same image, which is the aim of the method.

Fig. 7. LIVE images test. a) shows Gaussian blur distorted images; b) shows white
noise distorted images

5 Conclusions

Image quality assessment is an important tool that allows the user to perform a
comparison between variations of an image. This can be useful when developing



image processing algorithms and when designing imaging systems. A method
based on the entropy of Gabor filtered images has been developed. It combines
objective measures (entropy) with subjective ones (HVS).

An image database has been created to test our metric, by means of an
original set of natural images and applying different degradation methods to
this initial set. With these degradations, real world behaviours present in image
acquisition and image processing systems are modeled. When tested with this
database, the proposed metric works properly even in narrow ranges, which can
be checked by its strictly de-crescent charts. A test using LIVE Image Database
also confirms it is well suited to human observer perception of image quality.

To conclude, the combination of subjective characteristics, modelled by Ga-
bor filtering, and objective features, like entropy, provide a useful and powerful
starting point for further developments on Image Quality Assessment.
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